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Abstract 
 

Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the maize (Zea mays L.) genome. In 

this research, 348 SNPs were selected to explore the possibility of utilization in maize distinctiveness, uniformity and stability 

(DUS) testing. Mantel test indicated no missing information, by selecting the 384 SNPs. We examined 333 Chinese maize 

varieties with data from DUS test carried out for 42 characteristics and SNP genotyping data. The distance between varieties 

was calculated and we found no significant correlation between molecular and phenotypic distances. The phenotypic distances 

showed incredible differences, which are strongly influenced by environmental and statistical methods. It is necessary to set 

relative weightage for those characteristics which are easy to be affected by these factors in DUS testing. The application 

models for molecular markers in DUS testing should also go back to Model 1 (molecular characteristics as a predictor of 

traditional characteristics or gene specific markers) and look for more genetic linkage markers. © 2020 Friends Science 

Publishers 
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Introduction 

 

Maize (Zea mays L., Family Poaceae) is an important crop, 

and is grown around the world as a food, feed and fuel crop. 

Maize genotypes or varieties are vital for agricultural 

production. Breeding new and high yielding varieties need a 

huge investment and hard task (Yadav and Singh 2010). 

These newly varieties have solved the livelihood of several 

million people. As well as the plant breeders‟ intellectual 

property rights have also been protected, and by commercial 

returns the breeding work by the breeders have been 

supported and encouraged. The International Union for the 

Protection of New Varieties of Plants (UPOV) is an 

intergovernmental organization. Encouraging innovation in 

plant breeding is the purpose of UPOV (Jones et al. 2013). 

The uniqueness of a variety is established by tests for DUS. 

According to the UPOV treaty, the DUS test is a necessary 

condition to grant Plant Breeders Rights (PBR). At present, 

DUS testing is mainly based on assessment of 

morphological and physiological characters about new and 

existing varieties. The traditional method of DUS testing is 

time-consuming and expensive. It requires large areas of 

land and skilled personnel and often needs subjective 

decisions. Moreover, many of the morphological characters 

are multigenic or quantitative, and their expression is 

affected by environmental factors (Kuang et al. 2016). 

Maize is the first crop with maximum planting area 

and gives highest total yield in the People‟s Republic of 

China. The crop plays an important role in the agricultural 

economic structure of the country. From 1972 to 2013, 

6,291 maize varieties were approved by national and 

provincial governments (Yang et al. 2014). By 2019, the 

number of maize varieties had grown sharply to more than 

40,000. Due to the extensive size of the maize varieties, 

DUS testing needed a rapid and highly reliable method of 

plant variety identification system. This is likely to reduce 

cost and promote efficiency. With the development of high 

throughput genotyping technology, molecular marker 

technology has been widely used. DNA markers were 

implicated in plant breeding, such as marker-trait 

association, genomic prediction and selection, germplasm 

characterization and seed purity monitoring (Tian et al. 

2015). DNA marker techniques are also used to protect 

intellectual property of varieties. The UPOV guidelines 

allow for the use of markers as proxy for traits so long as 

there is a reliable marker-trait association. This could serve 

marker data as a surrogate for specific phenotypic 

characteristics including disease resistance (UPOV, TGP/15 

“Guidance on the Use of Biochemical and Molecular 

Markers in the Examination of Distinctness, Uniformity and 

Stability (DUS)”) in crop plants (Maton et al. 2014; Yan-

Fang et al. 2016). The UPOV has suggested three 
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application models for molecular markers in variety 

registration (UPOV document INF/18/1, 2011). These are: 

1) molecular characteristics as a predictor of traditional 

characteristics i.e., use of molecular characteristics which 

are directly linked to traditional characteristics (gene 

specific markers), 2) calibration of threshold levels for 

molecular characteristics against the minimum distance in 

traditional characteristics and 3) the development of a new 

system. 

Many markers are available in maize but for most of 

these markers, the genetic linkage with other agronomical or 

morphological characteristics is unknown. There are not 

enough fully diagnostic markers to adjudge distinctness in 

the UPOV Model 1. So, the researchers focused on the 

UPOV Model 2, which has been investigated in grapevine, 

maize, oilseed rape and in wheat and barley crops (Jones 

and Mackay 2015). But the outcomes of these investigations 

were unsatisfactory. UPOV‟s Biochemical and Molecular 

Techniques (BMT) Working Group has established a 

distinctness threshold in maize. Its work was based on the 

analysis of the phenotypic data of a set of varieties that have 

been identified as unique lines (Maton et al. 2014). As 

shown in the Fig. 1, the threshold for the molecular 

distances is 0.2 and for morphological data it is two traits. 

Thus, a secure system is implemented to ensure that the 

varieties sustain certain difference, which is enough to make 

an estimate without comparison in the field. 

Among many DNA markers, the SNP marker became 

popular. It is a broadly sampled genome having high quality 

and publicly available and collectively has a high capability 

to distinguish different varieties. So far, a lot of maize SNP 

markers have been developed (Jones et al. 2009; Chai et al. 

2012; Mammadov et al. 2012; Unterseer et al. 2014; Tian et 

al. 2015; Xu et al. 2017; Oh et al. 2018); in addition, high-

density platforms such as Affymetrix and Infinium 

platforms have also been developed. These techniques have 

been triumphantly applied to the mapping of genome-wide 

association and quantitative trait locus (QTL) in maize 

(Zwonitzer et al. 2011; Li et al. 2012). In addition, those 

techniques are also used to investigate the genetic structure 

of maize germplasm (Yan et al. 2010; Semagn et al. 2012; 

Wu et al. 2014; Hao et al. 2015; Zhou et al. 2016).  

In the present research, using Chinese maize varieties, 

we selected and assessed SNP loci for the analysis of maize 

DNA fingerprinting from the maize SNP50 array. We also 

examined the applicability of this SNP array to maize DUS 

testing based on genotypic and phenotypic data analysis of 

333 varieties. The feasibility of UPOV Model 2 in the DUS 

testing of Chinese maize was also evaluated. 

 

Materials and Methods 
 

Materials and SNP genotyping 

 

A total of 449 samples were taken to evaluate the SNP 

array, including 341 hybrids and 108 inbred lines. Total 

genomic DNA was extracted from young tissues of each 

cultivar using CTAB procedure (Wang et al. 2011). The 

maize SNP50 BeadChip was used to genotype DNA 

samples, which contained 56,110 SNP loci (Ganal et al. 

2011). 

 

DUS phenotyping 

 

The hybrids were grown in the field situated at the variety 

testing division of the Kunming DUS station. A total of 42 

agronomic traits were measured in each variety. These traits 

were the ones usually recommended by UPOV. They are 

also used by the national authorities in China for assessing 

DUS (Table 1). Following screening, varieties with missing 

phenotypic data of more than 10% and genotypic data of 

more than 20% were excluded. Finally, 333 varieties with 

both phenotypic and genotypic data were selected for the 

present study. These hybrid samples are commercial 

varieties that have been widely promoted in large areas. 

 

SNP data analysis 

 

Firstly, SNP rejecting was performed using parameters like 

Genome Studio Gen Train scores (<0.6), call rate (<95%), 

monomorphic, missing value (>5%) and minor allele 

frequency (MAF <0.05). From the 56,110 SNPs, a total of 

40,890 (73%) SNPs were designated as candidate loci. 

Secondly, deleting the SNPs with MAF values under 0.2 

and copy numbers greater than or equal to 2. The remaining 

5532 SNPs were used for further analysis. The statistical 

values, minor allele frequency (MAF), gene diversity, 

heterozygosity and Polymorphic Information Content (PIC) 

for each SNP were estimated using PowerMarker v3.25 

(Liu and Muse 2005). Thirdly, in order to minimize number 

of SNPs to cut costs, 384 SNPs were selected based on the 

quality of the flanked regions, with PIC value more than 

0.35 and even distribution on each chromosome. 

 
 

Fig. 1: Application model proposed by the BMT Working 

Group, it suggests the distinctness threshold for morphological 

and molecular distances
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Statistical analysis 
 

We calculated the genotypic and characteristic phenotypic 

distances. The genetic distances across the genotypes and 

UPGMA tree were calculated based on Nei‟s genetic 

distance. For the purpose PowerMarker v3.25 was used and 

the UPGMA tree was visualized using MEGA5. For 

phenotypic data, Euclidean distance was calculated by the 

statistical software package R v2.9.0., the matrix of all 

features was standardized. 

 

Results 

 

Selection of SNPs for corn variety DNA signature 

development 

 

A total of 56,110 SNPs were removed having a Genome 

Studio Gen Train scores <0.6, call rate <95%, MAF <0.05 

leaving 40,890 SNPs for downstream analysis. Out of these, 

27.10% (11,083) SNPs showed >5% missing values. In 

addition, 24,275 (26.39%) SNPs with a MAF of <0.20 were 

also present. These SNPs were removed from the dataset and 

the remaining 5,532 (13.52%) SNPs were included for 

further analysis. From this large amount of markers, 384 

SNP markers were selected. This singled out each of the 449 

genotypes used in the present study. The selection factors 

included the minor allele frequency score, the quality of the 

flanked regions and their distribution on the genome (Fig. 2). 

For the total 5,532 SNPs, the allele frequency of SNPs 

ranged from 0.20–0.57. The gene diversity across 5,532 loci 

ranged from 0.4282–0.5 with an average 0.4876. The mean 

polymorphism information content (PIC) value of SNPs was 

0.3876 with a range of 0.3365–0.375. The allele frequency of 

SNPs ranged from 0.20–0.57. The gene diversity across 384 

loci ranged from 0.4282–0.5 with an average 0.4856. The 

mean PIC value of SNPs was 0.3680 with a range of 0.3365–

0.375. The correlation between 5532 and 384 SNPs is 

positive and statistically significant at genetic distance 

matrices (r = 0.983; p<0.001). The study revealed that no 

information is lost by selecting the 384 SNPs (Fig. 3). 

 

Genetic distance and diversity analyses by SNP marker 
 

In the analysis of molecular fingerprints of 384 SNP 

markers, genetic distances coefficients among 333 varieties 

ranging from 0.0047–0.5287, with an average of 0.27. Of the 

varieties, 1.06, 10.90, 62.43, 24.67, 0.93 and 0.01% had 

genetic distances <0.1, 0.1–0.2, 0.2–0.3, 0.3–0.4, 0.4–0.5 and 

>0.5, respectively. Among them, 88.04% of the varieties had 

a genetic distances coefficient greater than 0.2 (Fig. 4). 

The general clusters of 333 varieties were analyzed 

adopting UPGMA tree based on Nei‟s genetic distance (Fig. 

5). Data showed that 384 SNP markers were effective enough 

to differentiate 333 commercial maize varieties. These 

Table 1: Characteristics of maize used in DUS testing 
 

No. Characteristics No. Characteristics 

1 First leaf: anthocyanin coloration of sheath  20 Stem: anthocyanin coloration of brace roots 
2 First leaf: shape of apex  21 Leaf: width of blade 

3 Tassel: time of anthesis  22 Foliage: intensity of green color 

4 Ear: time of silk emergence  23 Leaf: anthocyanin coloration of sheath 
5 Upside leaf: angle between blade and stem  24 Plant: height of insertion of peduncle of upper ear 

6 Lower leaf: angle between blade and stem 25 Plant: length 

7 Leaf: curvature of blade 26 Plant: ratio height of insertion of peduncle of upper ear to plant length 
8 Tassel: anthocyanin coloration at base of glume 27 Peduncle: length 

9 Tassel: anthocyanin coloration of glumes excluding base 38 Ear: length 

10 Tassel: anthocyanin coloration of anthers 29 Ear: diameter 
11 Tassel: density of spikelets 30 Ear: number of rows of grain 

12 Tassel: angle between main axis and lateral branches 31 Ear: shape 

13 Tassel: curvature of lateral branches 32 Ear: number of colors of grains 
14 Ear: anthocyanin coloration of silks 33 Ear: type of grain 

15 Tassel: length of main axis above lowest lateral branch 34 Ear: color of top of grain 

16 Tassel: length of main axis above highest lateral branch 35 Ear: color of dorsal side of grain 
17 Tassel: number of primary lateral branches 36 Ear: shap of grain 

18 Tassel: length of lateral branch 37 Ear: anthocyanin coloration of glumes of cob 

19 Stem: degree of zig-zag   

 

  
 

Fig. 2: Relative position based on the framework markers position 

of 384 SNP across the nine chromosomes 
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markers were able to distinguish the cultivars derived from 

common lineage such as ZBS112, ZBS113 and ZBS114. 

 

Phenotypic analysis of DUS traits 
 

In 2017 and 2018, 333 varieties were planted side by side 

and tested with reference to the DUS test guideline. 

Significant differences were found between the 333 varieties 

except for two pairs of varieties (ZBS109 and ZBS449, 

ZBS204 and ZBS253). Among them, ZBS109 and ZBS449 

are the same varieties from different sources and ZBS204 

and ZBS253 have common lineage. The morphological 

distances ranged from 0.26–0.92, reflecting genetic 

variation. 

 

Correlation between SNP markers and morphological 

traits 

 

The correspondence between the morphological traits and 

the SNPs markers genetic distances matrices was tested in a 

correlation analysis (Fig. 6). The correlation coefficient was 

0.17. The morphological distances and molecular distances 

showed extremely low correlation. According to the model 

in Fig. 1, 12% of the varieties had a genetic distances 

coefficient greater than 0.2, but almost all varieties have >2 

differences traits. 

 

Discussion 
 

It is particularly important to screen a set of SNP loci with 

high discriminatory ability, good stability and uniform 

distribution in fingerprint research based on SNP markers. In 

this study for the genotyping of the samples, the maize 

SNP50 Bead Chip containing 56,110 loci was used. 

According to the domestic and foreign screening 

requirements for SNP marker (Yang et al. 2011; Blair et al. 

2013), this research filtered the SNP markers with genome 

studio gentrain scores less than 0.6. In the filtering process of 

the SNP markers call rate less than 95%, monomorphic, 

missing value greater than 5%, and MAF less than 0.2 were 

considered. The remaining 5,532 SNPs were left for further 

analysis. The SNP markers were then selected considering 

PIC value more than 0.35, and their even distribution on each 

chromosome. Finally, 384 SNP loci were selected for maize 

DNA fingerprinting analysis. The diversity analysis 

indicated that there was no significant difference in the allele 

frequency, the gene diversity and the polymorphism 

information content between 5,532 SNPs and 384 SNPs. In 

addition, two genetic distance matrices calculated from 5,532 

and 384 SNPs had obvious correlation. This has indicated 

that no information was lost by selecting the 384 SNPs. In 

the study of Wu et al. (2014), a total of 83,638 alleles were 

detected, the average PIC was 0.291, ranging from 0.091–

0.375. For this study, the average PIC across 384 loci was 

0.3680. Therefore, this set of SNP markers has high 

polymorphism and credibility and can be used for fingerprint 

construction and identification of maize varieties. 

In the analysis of molecular fingerprints of 384 SNP 

markers, genetic distances coefficients among 333 varieties 

ranged from 0.0047–0.5287, with an average of 0.27. But 

the morphological distances ranged from 0.26–0.92 based 

on DUS testing. Furthermore, there was no correlation 

between the genetic distance matrices obtained by SNP and 

by the morphological data. The signs suggested that the 

number of phenotypic descriptors was large enough to 

separate the varieties, but the reliability of the calculated 

genetic relationship was poor. This may be due to the fact 

that the morphological traits were strongly affected by 

environmental condition, where all the phenotypic 

descriptors depend on the visual assessment of DUS test 

experts except for the measurement traits. Moreover, in 

statistical analysis of the data, the expression range for each 

feature in the DUS test guideline is divided into a number of 

states and the wording of each state is attributed to a digital 

annotation. These realities may expand the differences 

between varieties. So, these characteristics in the DUS Test 

Guidelines need to set a weight coefficient for variety 

identification to reduce error. 

 
 

Fig. 3: Correlation analysis of genetic distance calculated from 

5532 SNPs and 384 SNPs in 446 samples. Each point represents 

genetic distance between a pair of samples 

 

 
 

Fig. 4: Distribution of genetic distance coefficients for the 333 

maize varieties 
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In the decision making for DUS testing, a comparison 

between correlation values and the error rate was performed. 

The results showed that when correlations are below 0.60, 

the discrepancy rate based on phenotypic and molecular 

distance exceeds 80% in made distinctness decisions (Jones 

and Mackay, 2015). However, there was a lack of 

correlation between the genetic distance matrices obtained 

by SNP and by the morphological data in our work. The 

essence of UPOV BMT Model 2 requires calibration of 

genetic distance measures to reproduce the decisions made 

using morphological distances. If a genetic threshold is set 

at too low level, the quality of protection by Plant Breeders‟ 

rights is diminished. If a novel genetic threshold is set at too 

high, the „distinctness‟ needed to acquire protection of a 

new variety unreasonably diminished. Either of these 

situations poses a risk to breeders. These results of this study 

make the implementation of UPOV Model 2 infeasible. We 

consider that the application models for molecular markers 

in variety registration and DUS testing should also go back 

to the Model 1 and look for more genetic linkage markers. 

Fortunately, the costs of high-throughput DNA marker 

generation and sequencing are sharply reducing and the 

improvement of data processing efficiency is making its 

implementation achievable. 

UPOV‟s Biochemical and Molecular Techniques 

(BMT) Working Group has confirmed and adopted the 

threshold of 0.2 in maize. In the present study, the genetic 

distances coefficient of 333 varieties‟ showed normal 

distribution. Where, 88.04% of the varieties had a genetic 

distances coefficient greater than 0.2. In this study, the 

molecular markers revealed useful genetic diversity. The 
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Fig. 5: UPGMA clustering analysis of 333 varieties by 384 SNPs markers 

 
 

Fig. 6: Correlations between genetic distances and morphological 

distances
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genetic differences of most varieties are obvious with high 

discrimination and the same varieties can be clustered 

together. The varieties used in this study were a small sample 

representative of existing commercial hybrids. They typified 

the kind of diversity encountered by the testing authorities 

conducting registration tests. Therefore, even if the SNP 

markers used in the present study turn out not to be useful for 

DUS testing and registering varieties, they should be of value 

in other areas. These could be variety identification for 

consumer protection and seed authenticity and purity detection. 

 

Conclusion 

 

The molecular markers revealed useful of genetic diversity, 

but proved not to be useful for DUS testing. The phenotypic 

distances showed incredible differences, which are strongly 

influenced by environmental and statistical methods. We 

suggest that it is necessary to set relative weightage for the 

characteristics which are easily affected by these factors in 

DUS testing. The models for molecular markers application 

in variety registration and DUS testing should also go back 

to the Model 1 and look for more genetic linkage markers. 
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